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General System of Nonconvex Variational
Inequalities and Parallel Projection Method

Balwant Singh Thakur∗ and Suja Varghese

Abstract. Using the prox-regularity notion, we introduce and study
a system of general nonconvex variational inequalities. Using the par-
allel projection technique, we suggest and analyze a three-step iterative
method for this system. We establish a convergence result for the pro-
posed iteration method. We obtain some known results as a particular
case.

1. Introduction and Preliminaries

General variational inequality was introduced and studies by Noor [9].
It was a significant generalization of the variational inequalities, which was
introduced and studied by Stampacchia [15] in 1964. The set involved in
the above studies are convex. For application point of view, getting convex
sets is itself is a difficult problem, most of the times the set involved is not
convex. To overcome the difficulty caused by the nonconvexity of the set,
Noor [12] considered uniformly prox-regular sets and introduced a new class
of variational inequality called the general nonconvex variational inequality.
The prox-regular sets are nonconvex and include the convex sets as special
cases; (see [4]).

In recent years several numerical method appeared for solving variational
inequalities. These includes projection method and their variant forms,
which was mainly due to Sibony [14]. Iterative schemes to solve noncon-
vex variational problems was studied by Bounkhel et al. [3]. The projection
method is an important technique for the approximate solvability of vari-
ational inequalities. The main limitation of projection method is that the
convergence analysis requires the restrictive condition that the operators
involved must be strongly monotone. This strict condition rule out many
applications of the projection method for a wide class of problems. Gabay
[5] and Tseng [16] used cocoercive operators for projection method. It is

2010 Mathematics Subject Classification. 47J20, 65K10, 65K15, 90C33.
Key words and phrases. System of nonconvex general variational inequality, fixed point

problem, parallel algorithm, proximal normal cone, relaxed cocoercive mapping.
∗Corresponding author.

c©2012 Mathematica Moravica
79



80 General System of Nonconvex Variational. . .

also found that two-step and three-step iteration method preform better
than one-step method, see [10, 11]. Now a days implementation of iterative
algorithms have mainly been implemented through computer systems and
we also have modern multiprocessor systems in which different processor
can work simultaneously. When we apply two/three step sequential itera-
tion process we use only one processor at a time, so fails to explore the full
capacity of multiprocessor. If we define parallel iterative algorithm, we can
compute all the steps simultaneously on different processors, and this will
take less computational time than the sequential iteration which uses only
one processor at a time; (see [1, 2, 6, 7] for details in parallel computation).

Let H be a real Hilbert space whose inner product and norm are de-
noted by 〈., .〉 and ‖.‖ respectively. Let K be a nonempty subset of H.
We denote by d(.,K) the usual distance function to the subset K, i.e.
d(x,K) = infy∈K ‖x− y‖. Now we recall some well-known definitions and
results of nonlinear convex analysis and nonsmooth analysis.
Definition 1.1. [4] Let x ∈ H be a point not lying in K. Let y ∈ K is
a point whose distance to x is minimal, i.e. d(x,K) = ‖x− y‖, then y is
called a closest point or a projection of x onto K. The set of all such closest
points is denoted by projK(x); that is,

projK(x) = {y ∈ K : d(x,K) = ‖x− y‖} .
Also, y ∈ projK(x) if and only if {y} ⊂ K ∩ B̄ {x; ‖x− y‖} and K ∩

B {x; ‖x− y‖} = ∅. The vector x− y is called a proximal normal direction
to K at y. Any nonnegative multiple z = α(x − y), α ≥ 0 of such a vector
is called a proximal normal to K at x. The set of all z obtainable in this
manner is turned as proximal normal cone to K at x and is denoted by
Np
K(x).

Definition 1.2 ([13]). The proximal normal cone to K at x ∈ H is given
by

Np
K(x) = {z ∈ H : ∃ α > 0; x ∈ projK(x+ αz)} .

The proximal normal cone Np
K(x) has the following characterization.

Lemma 1.3. [13, Proposition 1.5] Let K be a nonempty subset of H. Then
a vector z ∈ Np

K(x) if and only if there exists a constant α = α(z, x) ≥ 0
such that

〈z, y − x〉 ≤ α ‖y − x‖2 , ∀ y ∈ K.
Clarke et al.[4] and Poliquin et al.[13] introduced and studied a new class

of nonconvex sets called uniformly prox-regular sets.
Definition 1.4. For a given r ∈ (0,∞], a subset K of H is said to be
uniformly prox-regular with respect to r ( or r−uniformly prox-regular) if
and only if, for all x ∈ K and for all 0 6= z ∈ Np

K(x), one has〈
z

‖z‖
, y − x

〉
≤ 1

2r
‖y − x‖2 for all y ∈ K.
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We use the convention that 1
r = 0 when r = +∞.

A closed subset of a Hilbert space is convex if and only if it is proximally
smooth of radius r > 0. Thus, in view of Definition 1.4, for the case of
r = ∞, the notion of uniform prox-regularity and convexity of K coincide.
It is known that the class of uniformly prox-regular set is sufficiently large
to include the class of convex sets, p−convex sets, C1,1 submanifolds of
H, the images under a C1,1 diffeomorphism of convex sets and many other
nonconvex sets.

Now recall the well known proposition which summarizes some important
properties of the uniformly prox-regularity.

Lemma 1.5. Let K be nonempty closed subset of H, r ∈ (0,∞] and Kr =
{x ∈ H : d(x,K) < r}. If K is uniformly r−prox-regular, then the following
holds:

(i) For all x ∈ Kr, set projK(x) 6= ∅.
(ii) For all s ∈ (0, r), projK is Lipschitz continuous with constant r

r−s
on Ks.

(iii) The proximal normal cone Np
K(x) is closed as a set valued mapping.

Let H be a Hilbert space and K a closed convex subset of H. Consider
the following problem:
Find x∗, y∗, z∗ ∈ K such that g(x∗), g(y∗), g(z∗) ∈ K,

(1.1)


〈ρT1(y∗) + g(x∗)− g(y∗), g(x)− g(x∗)〉 ≥ 0,

〈ηT2(z∗) + g(y∗)− g(z∗), g(x)− g(y∗)〉 ≥ 0,

〈σT3(x∗) + g(z∗)− g(x∗), g(x)− g(z∗)〉 ≥ 0,

for all x ∈ K, g(x) ∈ K, where g : H → H be a given mapping, T1, T2, T3 :
K → H are nonlinear operators and ρ, η, σ are nonnegative real numbers.
We call problem (1.1) as system of general variational inequalities (SGVI).

By the definition of the Normal cone, we now reformulate (SGVI) as
follows :

(1.2)


0 ∈ ρT1(y∗) + g(x∗)− g(y∗) +NK (g(x∗)) ,

0 ∈ ηT2(z∗) + g(y∗)− g(z∗) +NK (g(y∗)) ,

0 ∈ σT3(x∗) + g(z∗)− g(x∗) +NK (g(z∗)) .

By replacing the usual normal cone by proximal normal cone, we now
introduce the generalized version of problem (1.2) which we call system of
nonconvex general variational inequalities (SNGVI).

Let H be a Hilbert space and K a uniformly r−prox-regular subset of H.
We will consider the following problem:
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Find x∗, y∗, z∗ ∈ K such that g(x∗), g(y∗), g(z∗) ∈ K,

0 ∈ ρT1(y∗) + g(x∗)− g(y∗) +Np
K (g(x∗)) ,(1.3)

0 ∈ ηT2(z∗) + g(y∗)− g(z∗) +Np
K (g(y∗)) ,(1.4)

0 ∈ σT3(x∗) + g(z∗)− g(x∗) +Np
K (g(z∗)) .(1.5)

Lemma 1.6. LetK a uniformly r−prox-regular subset of H, then x∗, y∗, z∗ ∈
H with g(x∗), g(y∗), g(z∗) ∈ K is a solution of (SNGVI) if and only if

g(x∗) = projK(g(y∗)− ρT1(y∗)) ,
g(y∗) = projK(g(z∗)− ηT2(z∗)) ,
g(z∗) = projK(g(x∗)− σT3(x∗)) ,

provided that

0 < ρ ≤ s

1 + ‖T1(y∗)‖
, 0 < η ≤ s

1 + ‖T2(z∗)‖
,

0 < σ ≤ s

1 + ‖T3(x∗)‖
, s ∈ (0, r).

Proof. Using (1.3), and the fact that projK =
(
I +Np

K

)−1, we have

0 ∈ ρT1(y∗) + g(x∗)− g(y∗) +Np
K (g(x∗))

⇔ g(y∗)− ρT1(y∗) ∈ g(x∗) +Np
K (g(x∗)) =

(
I +Np

K

)
(g(x∗))

⇔ g(x∗) = projK(g(y∗)− ρT1(y∗)) ,

where I is the identity mapping.
Similarly, using (1.4) and (1.5), we have

g(y∗) = projK(g(z∗)− ηT2(z∗))
g(z∗) = projK(g(x∗)− σT3(x∗)) .

This completes the proof. �

Lemma 1.6 implies that (SNGVI) is equivalent to the fixed point problem.
This alternative equivalent formulation is very useful from the numerical
point of view. This fixed point formulation suggest the following iteration
method to solve (SNGVI)

(1.6)


g (xk+1) = projK(g(yk)− ρT1(yk)) ,
g (yk+1) = projK(g(zk)− ηT2(zk)) ,
g (zk+1) = projK(g(xk)− σT3(xk)) .

where ρ, η, σ are positive reals, satisfying certain conditions.
We now recall some definition, which will be used in the main result.
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Definition 1.7. A mapping H → H is called to be ζ−expansive if for all
x, y ∈ H, there exists a constant ζ > 0, such that

‖g(x)− g(y)‖ ≥ ζ ‖x− y‖ .

Definition 1.8. An operator T : H → H with respect to an arbitrary
operator g is said to be :

(i) (g, ν) strongly monotone, if for all x, y ∈ H, there exists a constant
ν > 0 such that

〈T (x)− T (y), g(x)− g(y)〉 ≥ ν ‖g(x)− g(y)‖2 ,

(ii) (g, ω) cocoercive, if for all x, y ∈ H,there exists a constant ω > 0
such that

〈T (x)− T (y), g(x)− g(y)〉 ≥ ω ‖Tx− Ty‖2 ,

(iii) relaxed (g, ω, t) cocoercive, if for all x, y ∈ H, there exists constants
t > 0 and ω > 0 such that

〈T (x)− T (y), g(x)− g(y)〉 ≥ −ω ‖Tx− Ty‖2 + t ‖g(x)− g(y)‖2 ,

(iv) (g, µ) Lipschitz continuous, if for all x, y ∈ H, there exists a constant
µ > 0 such that

‖T (x)− T (y)‖ ≤ µ ‖g(x)− g(y)‖ .

2. Main result

We now present, a result for the approximation-solvability of the (SNGVI)
problem using parallel algorithm 1.6. In what follows we assume that K is
a uniformly r−prox-regular subset of H with r > 0, also let s ∈ (0, r) and
set δ = r

r−s .

Theorem 2.1. Assume that g : H → H be ζ−expansive mapping and
Ti : K → H be relaxed (g, ωi, ti)-cocoercive and (g, µi) Lipschitz continuous
mappings satisfying δ(ωiµ2i + ti) > µi

√
δ2 − 1, 0 < δθi < 1, for i = 1, 2, 3.

Suppose that x∗, y∗, z∗ ∈ K form a solution to (SNGVI), then the sequence
{xk, yk, zk} generated by (1.6) strongly converges to (x∗, y∗, z∗), provided that
the following conditions are satisfied:

Θ1 −∆1 ≤ ρ ≤ min

{
Θ1 + ∆1,

s

1 + ‖T1(yn)‖
,

s

1 + ‖T1(y∗)‖

}
,

Θ2 −∆2 ≤ η ≤ min

{
Θ2 + ∆2,

s

1 + ‖T2(zn)‖
,

s

1 + ‖T2(z∗)‖

}
,

Θ3 −∆3 ≤ σ ≤ min

{
Θ3 + ∆3,

s

1 + ‖T3(xn)‖
,

s

1 + ‖T3(x∗)‖

}
,
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Θi =
ωiµ

2
i+ti
µ2i

, ∆i =

√
δ2(ωiµ2i+ti)

2−µ2i (δ2−1)
δµ2i

, for i = 1, 2, 3.

θ1 =
√

1 + 2ρω1µ21 − 2ρt1 + ρ2µ21, θ2 =
√

1 + 2ηγ2µ22 − 2ηt2 + η2µ22 and
θ3 =

√
1 + 2σγ3µ23 − 2σt3 + σ2µ23.

Proof. Since (x∗, y∗, z∗) is a solution of (SNGVI), from the conditions on the
parameters ρ, η and σ, we have

g(x∗) = projK(g(y∗)− ρT1(y∗)) ,
g(y∗) = projK(g(z∗)− ηT2(z∗)) , and
g(z∗) = projK(g(x∗)− σT3(x∗)) .

Using (1.6), we can write

‖g (xk+1)− g (x∗)‖ = ‖projK(g(yk)− ρT1(yk))− projK(g(y∗)− ρT1(y∗))‖
≤ δ ‖(g(yk)− ρT1(yk))− (g(y∗)− ρT1(y∗))‖ .(2.1)

Because of choice of ρ we have g(yk)− ρT1(yk) and g(y∗)− ρT1(y∗) belongs
to Ks. Since T1 is relaxed (g, ω1, t1) cocoercive and (g, µ1) Lipschitzian, we
have

‖g(yk)− g(y∗)− ρ (T1(yk)− T1(y∗))‖2

= ‖g(yk)− g(y∗)‖2 − 2ρ 〈T1(yk)− T1(y∗), g(yk)− g(y∗)〉

+ ρ2 ‖T1(yk)− T1(y∗)‖2

≤ ‖g(yk)− g(y∗)‖2 + 2ρω1 ‖T1(yk)− T1(y∗)‖2

− 2ρt1 ‖g(yk)− g(y∗)‖2 + ρ2 ‖T1(yk)− T1(y∗)‖2

≤ ‖g(yk)− g(y∗)‖2 + 2ρω1µ
2
1 ‖g(yk)− g(y∗)‖2

− 2ρt1 ‖g(yk)− g(y∗)‖2 + ρ2µ21 ‖g(yk)− g(y∗)‖2

=
[
1 + 2ρω1µ

2
1 − 2ρt1 + ρ2µ21

]
‖g(yk)− g(y∗)‖2 .(2.2)

By (2.1) and (2.2), we have

(2.3) ‖g (xk+1)− g (x∗)‖ ≤ δθ1 ‖g(yk)− g(y∗)‖ ,

where θ1 =
√

1 + 2ρω1µ21 − 2ρt1 + ρ2µ21.
Similarly, since T2 is relaxed (g, γ2, t2) cocoercive and (g, µ2) Lipschitzian,

we have

(2.4) ‖g (yk+1)− g (y∗)‖ ≤ δθ2 ‖g(zk)− g(z∗)‖ ,

where θ2 =
√

1 + 2ηγ2µ22 − 2ηt2 + η2µ22.
Also, since T3 is relaxed (g, γ3, t3) cocoercive and (g, µ3) Lipschitzian, we

have

(2.5) ‖g (zk+1)− g (z∗)‖ ≤ δθ3 ‖g(xk)− g(x∗)‖ ,

where θ3 =
√

1 + 2σγ3µ23 − 2σt3 + σ2µ23.
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From (2.3), (2.4) and (2.5), it follows that

‖g (xk+1)− g (x∗)‖+ ‖g (yk+1)− g (y∗)‖+ ‖g (zk+1)− g (z∗)‖
≤ δθ3 ‖g(xk)− g(x∗)‖+ δθ1 ‖g(yk)− g(y∗)‖+ δθ2 ‖g(zk)− g(z∗)‖
≤ max {δθ1, δθ2, δθ3}

(
‖g(xk)− g(x∗)‖+

+ ‖g(yk)− g(y∗)‖+ ‖g(zk)− g(z∗)‖
)

= λ (‖g(xk)− g(x∗)‖+ ‖g(yk)− g(y∗)‖+ ‖g(zk)− g(z∗)‖) ,(2.6)

where λ = max {δθ1, δθ2, δθ3} < 1.
Now, define the norm ‖.‖1 on H ×H ×H by

‖(x, y, z)‖1 = ‖x‖+ ‖y‖+ ‖z‖ , for all (x, y, z) ∈ H ×H ×H.
Then (H ×H ×H, ‖.‖1) is a Banach space. Hence, (2.6) implies that

‖(g (xk+1) , g (yk+1) , g (zk+1))− (g (x∗) , g (y∗) , g (z∗))‖1
≤ λ ‖(g (xk) , g (yk) , g (zk))− (g (x∗) , g (y∗) , g (z∗))‖1
≤ λk ‖(g (x1) , g (y1) , g (z1))− (g (x∗) , g (y∗) , g (z∗))‖1 .(2.7)

Since λ < 1, we get from (2.7) that

lim
k→∞

‖(g (xk) , g (yk) , g (zk))− (g (x∗) , g (y∗) , g (z∗))‖1 = 0.

Therefore, we obtain

lim
k→∞

‖g (xk)− g(x∗)‖ = 0,

lim
k→∞

‖g (yk)− g(y∗)‖ = 0,

lim
k→∞

‖g (zk)− g(z∗)‖ = 0.

Hence, sequences {g(xk)}, {g(yk)}, {g(zk)} converges to g(x∗), g(y∗) and
g(z∗) respectively. Since g is ζ−expansive, sequences {xk}, {yk} and {zk}
converges to x∗, y∗ and z∗ respectively.

This completes the proof. �

For z∗ = x∗ and η = σ and T2 = T3, the (SNGVI) reduces to the following
system of nonconvex variational inequality problem:
Find x∗, y∗, z∗ ∈ K such that g(x∗), g(y∗), g(z∗) ∈ K,

(2.8)
0 ∈ ρT1(y∗) + g(x∗)− g(y∗) +Np

K (g(x∗)) ,

0 ∈ ηT2(x∗) + g(y∗)− g(x∗) +Np
K (g(y∗)) .

System (2.8) appears to be new one.
If we take T1 = T2 and g = identity mapping in the system (2.8), then we

have following system of nonconvex variational inequality:
Find x∗, y∗ ∈ K such that

(2.9)
0 ∈ ρT (y∗) + x∗ − y∗ +Np

K (x∗) ,

0 ∈ ηT (x∗) + y∗ − x∗ +Np
K (y∗) .
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Remark 1. Moudafi [8] studied the system (2.9) and used following extended
iteration :

xk+1 = (1− αk)xk + αkprojK(yk − ρT (yk)),

yk = (1− βk)xk + βkprojK(xk − ηT (xk)),

where ρ, η are positive reals, 0 ≤ αk, βk ≤ 1 and
∑∞

k=0 αkβk =∞.
Since K is not convex, the iteration is not well defined, unless αk, βk = 1.
Theorem 2.1 improves and generalizes Theorem 2.1 of [8] for the problem

(SNGVI) and parallel algorithm considered here.

Remark 2. Consider the particular case where r = +∞, we have δ = 1 and
we can recover Theorem 3.1 of Verma [18] and Theorem 2.1 of Verma [17]
from Theorem 2.1.
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